VMXm: A new micro/nanofocus protein crystallography beamline at Diamond

Anna Warren
anna.warren@diamond.ac.uk
Introduction

- Target proteins are getting more complex, leading to smaller and more disordered crystals
- Can design ideal experiment to give optimal data quality

Current Limits

- 2.2 Å data can be collected from 1 µm³ crystals (~700 well diffracting crystals)
- 3 Å data can be collected from 5 µm³ membrane protein crystals grown in LCP (~35 crystals, grid scanned first for centring)
- From theoretical calculations a complete 2 Å dataset can be collected from a single 1 µm³ lysozyme crystal (Holton and Frankel, 2010)
- Discrepancies between theory and experiment
Current Limits

• Dose tolerance of samples cannot be changed – Henderson/Garman limit fixed

• Reduce dose on sample to measure given data quality:
 • Reduce experimental background
 • Cleaner sample mounting
 • Improve analysis for weak and multicrystal data
 • Record rotation data to improve data quality
 • Visualization of micron and sub-micron crystals
VMXm Aims

• Improve signal to noise by reducing background:
 • Sample environment under vacuum
 • Crystals mounted with minimal liquid
 • Reduce beamsize to match that of the crystal
• Standard rotation data collection on samples down to 500 nm
 • Alignment without the need for X-ray raster scanning
• Optimise sample alignment, sample cooling and data analysis for micron and sub-micron crystals
• Data collections using minimal amounts of sample
VMXm Specifications

- 6 – 28 keV energy range
- 0.3 – 10 μm (v) & 0.5 – 5 μm (h)
- Flux
 - $\sim 10^{13} \text{ ph/s in } 0.3 \times 5 \text{ μm (v x h)}$
 - $>10^{11} \text{ ph/s } 0.3 \times 0.5 \text{ μm (v x h)}$
- initially monochromatic beam
- polychromatic beam as an upgrade path
Sample Environment

- **In vacuo** sample environment - reduce X-ray background to a minimum
- Cryo-stage - preserve sample *in vacuo*
- Standard on-axis optical microscope + SEM for sample visualization and alignment
- High stability goniometry - permit rotation data to be measured from micro and nanocrystals
- Serial data collection also possible
SEM
Sample XZ stages
Isoalted cold-stage and gripper
Fluorescence detector
Sample holder
OAV port
Beamstop XY
Goniometer
SED
Sample Preparation

Ideal sample mounting:

- Reduce background to increase signal-noise:
 - Air path around sample
 - Sample mount
 - Solvent surrounding crystal
- Multiple crystals per mount
- Cryo-EM style sample preparation
 - Grids
 - Blotting
 - Plunge freezing
- SEM for sample characterisation
Cryo-EM Grids

Support film

Grid

3 mm
Sample Characterisation
Sample Mounting
RT Measurements in Vacuum

No sample
300 mA, 12.4 keV, 100 % transmission, 0.5s exposure
RT Measurements in Vacuum

Shot through SiN window containing 1M NaAc pH 3.0, 6% PEG 6000, 20% NaCl
500 nm windows x 2, ~10-20 um solvent thickness
300 mA, 12.4 keV, 100% transmission, 0.5s exposure
First User Experiments

- Dr. Ivo Tews and Rachel Bolton
 - Institute of Life Sciences, School of Biological Sciences, University of Southampton

- FutA
 - Space group P21
 - Unit cell 39.2, 77.7, 47.7, 90.0, 97.9, 90.0
 - Approx. crystal size 5 - 10 µm
 - Measured ~5 – 10 degs per crystal

- The first grid measured at cryo temperatures, in vacuum, using a 0.8 x 2.8µm X-ray beam produced beautiful diffraction
FutA: 12.423 keV; 0.1 s, 0.1 deg, 10 % transmission (~5x10^{10} ph/s)

11.45 Å
FutA: 12.423 keV; 0.1 s, 0.1 deg, 10% transmission (~5x10^{10} ph/s)
Merging statistics by resolution bin

<table>
<thead>
<tr>
<th>d_max</th>
<th>d_min</th>
<th>n_obs</th>
<th>n_uniq</th>
<th>mult</th>
<th>comp</th>
<th><l></th>
<th><l/sl></th>
<th>r_merge</th>
<th>r_meas</th>
<th>r_pim</th>
<th>cc1/2</th>
<th>cc_anom</th>
</tr>
</thead>
<tbody>
<tr>
<td>29.97</td>
<td>5.13</td>
<td>2413</td>
<td>927</td>
<td>2.60</td>
<td>78.89</td>
<td>86.2</td>
<td>46.5</td>
<td>0.057</td>
<td>0.069</td>
<td>0.038</td>
<td>0.991</td>
<td>0.155</td>
</tr>
<tr>
<td>5.13</td>
<td>4.07</td>
<td>2463</td>
<td>946</td>
<td>2.60</td>
<td>81.13</td>
<td>99.9</td>
<td>39.8</td>
<td>0.075</td>
<td>0.091</td>
<td>0.050</td>
<td>0.975</td>
<td>0.269</td>
</tr>
<tr>
<td>4.07</td>
<td>3.56</td>
<td>2454</td>
<td>937</td>
<td>2.62</td>
<td>80.92</td>
<td>77.7</td>
<td>32.0</td>
<td>0.077</td>
<td>0.094</td>
<td>0.051</td>
<td>0.980</td>
<td>0.112</td>
</tr>
<tr>
<td>3.56</td>
<td>3.23</td>
<td>2461</td>
<td>920</td>
<td>2.67</td>
<td>80.28</td>
<td>49.7</td>
<td>24.2</td>
<td>0.100</td>
<td>0.122</td>
<td>0.066</td>
<td>0.967</td>
<td>0.196</td>
</tr>
<tr>
<td>3.23</td>
<td>3.00</td>
<td>2521</td>
<td>938</td>
<td>2.69</td>
<td>82.64</td>
<td>32.0</td>
<td>18.2</td>
<td>0.113</td>
<td>0.136</td>
<td>0.073</td>
<td>0.966</td>
<td>-0.049</td>
</tr>
<tr>
<td>3.00</td>
<td>2.83</td>
<td>2511</td>
<td>914</td>
<td>2.75</td>
<td>80.04</td>
<td>21.3</td>
<td>14.7</td>
<td>0.125</td>
<td>0.150</td>
<td>0.080</td>
<td>0.955</td>
<td>-0.008</td>
</tr>
<tr>
<td>2.83</td>
<td>2.68</td>
<td>2663</td>
<td>950</td>
<td>2.80</td>
<td>81.97</td>
<td>16.6</td>
<td>12.5</td>
<td>0.153</td>
<td>0.184</td>
<td>0.098</td>
<td>0.913</td>
<td>0.019</td>
</tr>
<tr>
<td>2.68</td>
<td>2.57</td>
<td>2243</td>
<td>874</td>
<td>2.57</td>
<td>75.93</td>
<td>12.4</td>
<td>10.5</td>
<td>0.168</td>
<td>0.201</td>
<td>0.107</td>
<td>0.923</td>
<td>-0.604</td>
</tr>
<tr>
<td>2.57</td>
<td>2.47</td>
<td>2041</td>
<td>814</td>
<td>2.51</td>
<td>72.23</td>
<td>11.2</td>
<td>9.3</td>
<td>0.173</td>
<td>0.208</td>
<td>0.111</td>
<td>0.935</td>
<td>0.433</td>
</tr>
<tr>
<td>2.47</td>
<td>2.38</td>
<td>1699</td>
<td>769</td>
<td>2.21</td>
<td>66.24</td>
<td>9.6</td>
<td>8.3</td>
<td>0.181</td>
<td>0.221</td>
<td>0.123</td>
<td>0.916</td>
<td>0.556</td>
</tr>
<tr>
<td>2.38</td>
<td>2.31</td>
<td>1333</td>
<td>686</td>
<td>1.94</td>
<td>60.76</td>
<td>8.7</td>
<td>7.2</td>
<td>0.191</td>
<td>0.238</td>
<td>0.138</td>
<td>0.917</td>
<td>0.618</td>
</tr>
<tr>
<td>2.31</td>
<td>2.24</td>
<td>1114</td>
<td>628</td>
<td>1.77</td>
<td>54.47</td>
<td>7.4</td>
<td>6.2</td>
<td>0.224</td>
<td>0.289</td>
<td>0.180</td>
<td>0.866</td>
<td>-0.923</td>
</tr>
<tr>
<td>2.24</td>
<td>2.18</td>
<td>856</td>
<td>530</td>
<td>1.62</td>
<td>47.36</td>
<td>6.3</td>
<td>5.3</td>
<td>0.201</td>
<td>0.261</td>
<td>0.163</td>
<td>0.906</td>
<td>0.000</td>
</tr>
<tr>
<td>2.18</td>
<td>2.13</td>
<td>729</td>
<td>509</td>
<td>1.43</td>
<td>44.34</td>
<td>5.1</td>
<td>4.0</td>
<td>0.249</td>
<td>0.327</td>
<td>0.208</td>
<td>0.776</td>
<td>0.615</td>
</tr>
<tr>
<td>2.13</td>
<td>2.08</td>
<td>561</td>
<td>410</td>
<td>1.37</td>
<td>36.51</td>
<td>5.9</td>
<td>3.4</td>
<td>0.296</td>
<td>0.405</td>
<td>0.274</td>
<td>0.549</td>
<td>0.000</td>
</tr>
<tr>
<td>2.08</td>
<td>2.04</td>
<td>445</td>
<td>352</td>
<td>1.26</td>
<td>29.93</td>
<td>4.0</td>
<td>3.0</td>
<td>0.198</td>
<td>0.272</td>
<td>0.186</td>
<td>0.874</td>
<td>0.000</td>
</tr>
<tr>
<td>2.04</td>
<td>2.00</td>
<td>345</td>
<td>289</td>
<td>1.19</td>
<td>25.92</td>
<td>2.9</td>
<td>2.4</td>
<td>0.245</td>
<td>0.344</td>
<td>0.241</td>
<td>0.732</td>
<td>0.000</td>
</tr>
<tr>
<td>2.00</td>
<td>1.96</td>
<td>246</td>
<td>210</td>
<td>1.17</td>
<td>18.21</td>
<td>2.4</td>
<td>2.2</td>
<td>0.113</td>
<td>0.159</td>
<td>0.113</td>
<td>0.957</td>
<td>0.000</td>
</tr>
<tr>
<td>1.96</td>
<td>1.92</td>
<td>156</td>
<td>134</td>
<td>1.16</td>
<td>11.80</td>
<td>1.9</td>
<td>2.0</td>
<td>0.108</td>
<td>0.153</td>
<td>0.108</td>
<td>0.951</td>
<td>0.000</td>
</tr>
<tr>
<td>1.92</td>
<td>1.89</td>
<td>76</td>
<td>66</td>
<td>1.15</td>
<td>5.86</td>
<td>1.6</td>
<td>1.5</td>
<td>0.439</td>
<td>0.620</td>
<td>0.439</td>
<td>0.994</td>
<td>0.000</td>
</tr>
</tbody>
</table>
Refined FW, PHWT map from REFMAC viewed in COOT

Data from 13 FutA crystals integrated and scaled with DIALS and analysed further using CCP4

~80% complete data to 2.4 Å
CPV Ld14

- Spacegroup I23
- Unit cell $a=103$ Å
- Approx crystal size 3 – 4 µm
CPV Ld14: 12.423 keV; 0.1 s, 0.1 deg, 100% transmission (~5×10^{11} ph/s)
Acknowledgements

Graham Duller
Andy Stallwood
Richard Parr
Tony Gardner
Leo Cahill
Kevin Wilkinson
Alan Nash
Steve Buxcey
Paul Benson’s IFM Team
Andy Foster
James O’Hea
Brian Nutter
Ben Kemp
Victoria Lawson
Sonia Moon

Mark Lunnun
Dave Butler
Adam Taylor
Adam Prescott
Leon Adams
Simon Lay
Hugo Shiers
Guenther Rehm
Chris Bloomer

Gwyndaf Evans
Jose Trincao
Emma Beale
Adam Crawshaw

David Laundy
Lucia Alianelli
John Sutter
Simon Alcock
Kawal Sahwney