Automated model building with Buccaneer

The buccaneer software for automated model building of protein structures across a broad range of resolutions.

Kevin Cowtan
YSBL, University of York
kevin.cowtan@york.ac.uk
X-ray structure solution pipeline...

- Data collection
- Data processing
 - Experimental phasing
 - Molecular Replacement
 - Density Modification
 - Model building
 - Refinement
 - Rebuilding Validation

Kevin Cowtan, kevin.cowtan@york.ac.uk
Tsukuba 2014
Model Building

Model building software:
- Buccaneer
Buccaneer

Statistical model building software based on the use of a reference structure to construct likelihood targets for protein features.

- **1.0 release in 2008**
 - Tracing, sequencing, ncs and refinement
- **1.2 release (1.1.9) in CCP4 6.1.2**
 - Faster, better sequencing
- **1.4 release in CCP4 6.1.13**
 - MR support, known structure, command line
- **1.5 release in CCP4 6.2**
 - Model tidying
 - Minor sequencing improvements
- **1.6 release in CCP4 6.3(4)**
 - Different MR modes
Buccaneer: Method

- Compare simulated map and known model to obtain likelihood target, then search for this target in the unknown map.
Buccaneer: Method

- Compile statistics for reference map in 4Å sphere about Cα => LLK target.

- Use mean/variance.

4Å sphere about Cα also used by 'CAPRA' Ioeger et al. (but different target function).
Buccaneer

Use a likelihood function based on conserved density features.
The same likelihood function is used several times. This makes the program very simple (<3000 lines), and the whole calculation works over a range of resolutions.

Finding, growing: Look for C-alpha environment
(4.0Å sphere about Cα)

Sequencing: Look for C-beta environment
(5.5Å sphere about Cβ)

ALA, CYS, HIS, MET, THR, ... x20
Buccaneer

10 stages:
- **Find** candidate C-alpha positions
- **Grow** them into chain fragments
- **Join** and merge the fragments, resolving branches
- **Link** nearby N and C terminii (if possible)
- **Sequence** the chains (i.e. dock sequence)
- **Correct** insertions/deletions
- **Filter** based on poor density
- **NCS Rebuild** to complete NCS copies of chains
- **Prune** any remaining clashing chains
- **Rebuild** side chains
Buccaneer

Case Study:

A difficult loop in a 2.9Å map, calculated using real data from the JCSG.
Find candidate C-alpha positions
Grow into chain fragments
Join and merge chain fragments
Sequence the chains
Correct insertions/deletions
Prune any remaining clashing chains
Rebuild side chains
Comparison to the final model
Buccaneer

Model completion uses “**Lateral growing**”:
Grow sideways from existing chain fragments by looking for new C-alphas at an appropriate distance “sideways” from the existing chain:
Lateral growing likelihood function
New C-alpha candidates
Buccaneer: Results

Model completeness not very dependent on resolution:

![Graph showing model completeness vs. initial map resolution in Angstroms. The x-axis represents the initial map resolution (Å), ranging from 1.4 to 3.2, while the y-axis represents Buccaneer model completeness, ranging from 0 to 1. The graph displays a scatter plot with data points indicating a trend that model completeness remains relatively constant across different resolutions.](image-url)
Buccaneer: Results

Model completeness dependent on initial phases:
Buccaneer

Cycle BUCCANEER and REFMAC for most complete model

New loop building tool

New nucleotide building tool
Buccaneer (MR)

- different modes to balance trade-off between model bias and stabilizing of calculation with poor data
Buccaneer

What you need to do afterwards:

• Tidy up with Coot.
 - Or ARP/wARP when resolution is good.
 - Buccaneer+ARP/wARP better+faster than ARP/wARP.

• Typical Coot steps:
 - Connect up any broken chains.
 - Use density fit and rotamer analysis to check rotamers.
 - Check Ramachandran, molprobity, etc.
 - Add waters, ligands, check un-modeled blobs..
 - Re-refine, examine difference maps.
Buccaneer: Future

Buccaneer 1.7
• Loop building (sloop)

Buccaneer 1.8
• Reworked joining and correction code

Buccaneer 1.9
• CIS peptides? GLY conformations? NCS?
Buccaneer: Summary

A simple, (i.e. MTZ and sequence), very fast method of model building which is robust against resolution. User reports for structures down to 3.7Å when phasing is good. Results can be further improved by iterating with refinement in refmac (and in future, density modification). Proven on real world problems.

Use it when resolution is poor or you are in a hurry. If resolution is good and phases are poor, then ARP/wARP may do better. Best approach: Run both!
Nautilus (poly-nucleotide building)
Nautilus (available in CCP4)
Coot integration

- Cootaneer: sequencing part of Buccaneer
- Fast secondary structure finding
- Cootilus: automated nucleic acid finding/building (https://www.youtube.com/watch?v=QGN6tF-zKOE)
- DB loop: loop/fragment building based on SLoop
Acknowledgments

Help:
- JCSG data archive: www.jcsg.org
- Garib Murshudov, Raj Pannu, Pavol Skubak
- Eleanor Dodson, Paul Emsley, Randy Read, Clemens Vonrhein

Funding:
- The Royal Society, BBSRC, CCP4