Small Angle Scattering Platform for Structural Biology

Petra Pernot, ESRF

OUTLINE:
- SAXS/SANS in Grenoble: new SAS platform of CISB
- Conversion of ID14-EH3 from MX to bio-SAXS
• Instruments available to European biological community
• Joint proposals SAXS/SANS
• Expertise
 – use of instruments
 – experimental protocols
 – data interpretation

ILL: Peter Timmins, P. Callow, R. May,
IVMS: M. Jamin,
EMBL: J. Marquez,
IBS: E. Pebay-Peyroula, M. Blackledge, F. Gabel,
ESRF: S. Larsen, C. Ferrero, P. Pernot, D. Spruce
SMALL ANGLE SCATTERING

= a technique for studying structure and association at low resolution in solution under normal biochemical conditions

Information from SAS:
- model independent parameters \(R_g, I(0) \)
- \textit{ab initio} shape determination
- rigid body modelling

- molecular shape
- molecular interactions
- kinetics

- complementarity of SAXS and SANS

<table>
<thead>
<tr>
<th></th>
<th>SAXS</th>
<th>SANS</th>
</tr>
</thead>
<tbody>
<tr>
<td>volume</td>
<td>small < 50 ml</td>
<td>larger ~ 300 ml</td>
</tr>
<tr>
<td>concentration</td>
<td>> 0.1 mg/ml</td>
<td>> 1 mg/ml</td>
</tr>
<tr>
<td>measuring time</td>
<td>short ~ s</td>
<td>longer ~ m+h</td>
</tr>
<tr>
<td>radiation damage</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>contrast variation</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>sensitive to salts, denaturants</td>
<td>yes</td>
<td>no</td>
</tr>
</tbody>
</table>
INSTRUMENTS FOR SAS

- SAXS – ESRF
 - ID2
 - ID14-3 conversion: budget ESRF, scientist EMBL

- SANS – ILL
 - D11
 - D22
 - D33 project

- Instruments available via proposals to ESRF and ILL
ID14-EH3 conversion to bio-SAXS

GOAL = investigation of biological macromolecular complexes in solution

q_{min} and q_{max} defined by the experimental setup:
- $\lambda = 0.931\text{Å}$, $(E = 13.3 \text{ keV})$
- detector diameter ~ 20 cm,
- sample-to-detector distance $D: 1-3 \text{ m}$
- beam stop size $\sim 2 \text{ mm}$

| D | q_{min} | d_{max} | q_{max} | d_{min}
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 m</td>
<td>0.013 Å^{-1}</td>
<td>47 nm</td>
<td>1.34 Å^{-1}</td>
<td>4.68 Å</td>
</tr>
<tr>
<td>3 m</td>
<td>$4.3 \times 10^{-3} \text{ Å}^{-1}$</td>
<td>140 nm</td>
<td>0.45 Å^{-1}</td>
<td>14 Å</td>
</tr>
</tbody>
</table>
REQUIRED MODIFICATIONS

q resolution limited by beam divergence, beam size, parasitic scattering, detector PSF and dynamic range, ...
OPTIC HUTCH

- beam defining slits after the mirror
- fluorescent screen after the slits
- attenuators before Ge crystal

DONE during October shutdown
MINIHUTCH in mezzanine

~ 4 m from the sample

Status:
- all components ordered
- safety approval obtained
- installation during the winter shutdown
EXPERIMENTAL HUTCH

January-March 2008
- commissioning of new electronics of Optic hutch, minihutch equipments and feasibility SAXS tests
- equiped as it is, however without Be-window, with new table to hold detector
~ 2.6 m from the sample (small cell on microdiff), flight tube, motorized beamstop
EXPERIMENTAL HUTCH

from March 2008: installation of new equipments and commissioning

FLIGHT TUBE with modulable length, height
- with large Kapton window
- motorized beam stop with an incorporated diode close to detector

GUARD SLITS in vacuum as close possible to the sample

SAMPLE cell

Kapton window

Fluorescent screen and diode near to sample position

X-rays

Status:
- decisions pending…
Present on the beamline: Q4R ADSC
- 2×2 array with no more than 400 μm slit between detecting areas
- 2304×2304 pixels, $82 \, \mu m^2$ each
- active area: $188 \times 188 \, mm^2$
- readout time: lowest noise $\sim 9 \, s$
 high speed $\sim 3 \, s$
- 16 bits
Fiber optically coupled (taper) Frelon CCD based on **Kodak KAF-4320** image sensor
- Active area: $10 \text{ cm} \times 10 \text{ cm}$
- Full dynamic range: 16 bit (14.5 bit above the noise)
- Spatial resolution: $80 \mu\text{m}$ (49 μm pixel)
- Full frame rate of 3 frames/sec (2048×2048)
- Detector translation table to cover required q-range

ID02 installation
Bruker AXS
VÅNTEC-2000

Gas-filled detector bought by Detector pool

14 cm x 14 cm active area
100 msec Snapshot
spatial resolution = 70 µm
local and global count rate of >800,000
high dynamic range of >10⁷
high area uniformity

Inert counting gas
no maintenance required

Radiation hard
can withstand primary beam

all advantages of a sealed, gaseous, photon-counting detector with real-time mode
PILATUS

- high dynamic range: > 1:1 000 000 (20bits)/pixel/image
- readout time ~ 3 ms
- no electronic noise
- point spread function = 1 pixel
- electronically gateable: no mechanical shutter needed
- pixel size: 172 x 172 µm²
- single module: 195 x 487 pixels
- active area single module: 33.5 x 83.8 mm²
- counting rate: > 2 x 10⁶/s/pixel
- framing rate: 200 Hz
- energy range: 3 – 30 keV

‘Stripe’ (5 modules, 500K) bought by the bio-SAXS beamline at EMBL Hamburg borrow to the ESRF from January to September 2008
Timetable 2007-8

ID14-EH3 as MX operation

no perturbations for others ID14 end-stations

Commissioning as SAXS with user volunteers
ID14-EH3 conversion to bio-SAXS

people involved

Cooperation with EMBL Hamburg: D. Svergun, M. Rössle
- actual bio-SAXS beamline at Doris, future at PETRA III
- PILATUS, ‘mini’ Sample Changer, data analysis software, etc.
Via EMBL Grenoble: F. Cipriani, A. McCarthy

Advice from ID02 and BM26 ESRF: N. Theyencheri, P. Bösecke, and W. Bras

MX ‘realisation team’: P. Theveneau, D. Spruce, T. Mairs, D. Nurizzo

Still waiting for EMBL expert…: NN